Abstract

Tumor necrosis factor (TNF)-α has been reported to be important in glomerulonephritis, which is closely associated with podocyte dysfunction and apoptosis. However, the precise mechanisms by which TNF-α expression are regulated remain unclear. The purpose of the present study was to investigate the role of microRNA (miR)-130a-3p/301a-3p in the post-transcriptional control of TNF-α expression and high glucose (HG)-induced podocyte dysfunction. Mice MPC5 podocytes were incubated with HG and transfected with miR-130a-3p/301a-3p mimics or inhibitors, reactive oxygen species (ROS) levels were measured by flow cytometry assay, and the mRNA and protein levels were assayed by using reverse transcription-quantitative polymerase chain reaction and western blotting, respectively. The targeted genes were predicted by a bioinformatics algorithm and verified using a dual luciferase reporter assay. It was observed that miR-130a-3p/301a-3p was a novel regulator of TNF-α in mouse podocytes. miR-130a-3p/301a-3p mimics inhibited TNF-α 3'-untranslated region luciferase reporter activity, in addition to endogenous TNF-α protein expression. Furthermore, forced expression of miR-130a-3p or miR-301a-3p resulted in the downregulation of ROS and malondialdehyde (MDA) and the upregulation of superoxide dismutase (SOD) 1 in the presence of HG. Inhibition of TNF-α level prevented a remarkable reduction in SOD activity and a marked increase in ROS and MDA levels in HG-treated podocytes. Furthermore, TNF-α loss-of-function significantly reversed HG-induced podocyte apoptosis. These data demonstrated a novel up-stream role for miR-130a-3p/301a-3p in TNF-α-mediated podocyte dysfunction and apoptosis in the presence of HG.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call