Abstract
BackgroundMicroRNA-101 (miR-101) is a tumor suppressor microRNA (miRNA) and its loss is associated with the occurrence and progression of various diseases. However, the biological function and target of miR-101 in the pathogenesis of hypertrophic scars (HS) remains unknown.MethodsWe harvested HS and paired normal skin (NS) tissue samples from patients and cultured their fibroblasts (HSF and NSF, respectively). We used quantitative reverse transcriptase polymerase chain reaction (qRT-PCR), fluorescence in situ hybridization (FISH), enzyme-linked immunosorbent assays (ELISA) and Western blot analyses to measure mRNA levels and protein expression of miR-101, enhancer of zeste homolog 2 (EZH2), collagen 1 and 3 (Col1 and Col3) and α-smooth muscle actin (α-SMA) in different in vitro conditions. We also used RNA sequencing to evaluate the relevant signaling pathways and bioinformatics analysis and dual-luciferase reporter assays to predict miR-101 targets. We utilized a bleomycin-induced fibrosis mouse model in which we injected miR-101 mimics to evaluate collagen deposition in vivo.ResultsWe found low expression of miR-101 in HS and HSF compared to NS and NSF. Overexpressing miR-101 decreased Col1, Col3 and α-SMA expression in HSF. We detected high expression of EZH2 in HS and HSF. Knockdown of EZH2 decreased Col1, Col3 and α-SMA in HSF. Mechanistically, miR-101 targeted the 3′-untranslated region (3′UTR) of EZH2, as indicated by the decreased expression of EZH2. Overexpressing EZH2 rescued miR-101-induced collagen repression. MiR-101 mimics effectively suppressed collagen deposition in the bleomycin-induced fibrosis mouse model.ConclusionsOur data reveal that miR-101 targets EZH2 in HS collagen production, providing new insight into the pathological mechanisms underlying HS formation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.