Abstract

Aortic valve calcification commonly occurs in patients with chronic kidney disease (CKD). However, the regulatory functions of microRNAs (miRNAs/miRs) in the osteogenic differentiation of human aortic valvular interstitial cells (hAVICs) in patients with CKD remain largely unknown. This study aimed to explore the functional role and underlying mechanisms of miR-93-5p and miR-374a-5p in the osteogenic differentiation of hAVICs. For this purpose, hAVICs calcification was induced with high-calcium/high-phosphate medium and the expression levels of miR-93-5p and miR-374a-5p were determined using bioinformatics assay. Alizarin red staining, intracellular calcium content, and alkaline phosphatase activity were used to evaluate calcification. The expression levels of bone morphogenetic protein-2 (BMP2), runt-related transcription factor 2 (Runx2), and phosphorylated (p)-Smad1/5 were detected by luciferase reporter assay, reverse transcription-quantitative polymerase chain reaction (RT-qPCR), and western blot analysis. The results revealed that the expression levels of miR-93-5p and miR-374a-5p were significantly decreased in hAVICs in response to high-calcium/high-phosphate medium. The overexpression of miR-93-5p and miR-374a-5p effectively suppressed the high-calcium/high-phosphate-induced calcification and osteogenic differentiation makers. Mechanistically, the overexpression of miR-93-5p and miR-374a-5p inhibits osteogenic differentiation by regulating the BMP2/Smad1/5/Runx2 signaling pathway. Taken together, this study indicates that miR-93-5p and miR-374a-5p suppress the osteogenic differentiation of hAVICs associated with calcium-phosphate metabolic dyshomeostasis through the inhibition of the BMP2/Smad1/5/Runx2 signaling pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.