Abstract

Neoatherosclerosis (NA), the main pathological basis of late stent failure, is the main limitation of interventional therapy. However, the specific pathogenesis and treatment remain unclear. In vivo, NA model was established by carotid wire injury and high-fat feeding in ApoE−/− mice. Oxidized low-density lipoprotein receptor-1/lectin-like oxidized low-density lipoprotein receptor-1 (OLR1/LOX-1), a specific receptor for oxidized low-density lipoprotein (ox-LDL), was specifically ectopically overexpressed in hepatocytes by portal vein injection of adeno-associated serotype 8 (AAV8)-thyroid binding globulin (TBG)-Olr1 and the protective effect against NA was examined. In vitro, LOX-1 was overexpressed on HHL5 using lentivirus (LV)-OLR1 and the vascular smooth muscle cells (VSMCs)-HHL5 indirect co-culture system was established to examine its protective effect on VSMCs and the molecular mechanism. Functionally, we found that specific ectopic overexpression of LOX-1 by hepatocytes competitively engulfed and metabolized ox-LDL, alleviating its resulting phenotypic transformation of VSMCs including migration, downregulation of contractile shape markers (smooth muscle α-actin (SMαA) and smooth muscle-22α (SM22α)), and upregulation of proliferative/migratory shape markers (osteopontin (OPN) and Vimentin) as well as foaminess and apoptosis, thereby alleviating NA, which independent of low-density lipoprotein (LDL) lowering treatment (evolocumab, a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 (PCSK9)). Mechanistically, we found that overexpression of LOX-1 in hepatocytes competitively engulfed and metabolized ox-LDL through upregulation of arachidonate-15-lipoxygenase (ALOX15), which further upregulated scavenger receptor class B type I (SRBI) and ATP-binding cassette transporter A1 (ABCA1). In conclusion, the overexpression of LOX-1 in liver protects VSMCs from phenotypic transformation and wire injury induced carotid neoatherosclerosis through ALOX15.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call