Abstract
ABSTRACT Objective Acute myocardial infarction (AMI) is characterized by myocardial tissue necrosis and activation of inflammatory response. This study aims to elucidate the potential mechanism underlying the protective effects of long non-coding RNA (lncRNA) highly up-regulated in liver cancer (HULC) against myocardial ischemia/reperfusion (I/R) injury in rat models and apoptosis of cardiomyocytes. Methods We firstly established rat models of myocardial I/R injury and rat cardiomyocyte (H9c2 cells) models of hypoxia/reoxygenation (H/R) injury. Sprague-Dawley (SD) neonatal rats were randomized into four groups: sham, I/R, I/R+ microRNA (miR) −377-5p mimic, and I/R+ miR-377-5p antagomir, respectively. Then, histopathological examination was applied. Apoptosis was evaluated by transferase-mediated dUTP nick end labeling (TUNEL) staining. Cell vitality was measured using MTT assay. The concentrations of creatine kinase MB (CK-MB), cardiac troponin I (cTnI), interleukin (IL) −6 (IL-6), and tumor necrosis factor-α (TNF-α) were detected by enzyme-linked immunosorbent assay (ELISA). The expression of Cleaved-Caspase-3, Caspase-3, NOD-like receptor P3 (NLRP3), Caspase-1, and IL-1β was analyzed by immunohistochemical (IHC) or Western blot analysis. Results We found that HULC was downregulated and miR-377-5p was upregulated in IR-injured myocardial tissue and the H/R-induced H9c2 cell. Overexpression of miR-377-5p increased myocardial dysfunction and apoptosis and activated formation and secretion of IL-6 and TNF-α. The preprocessing of miR-377-5p silencing emerged opposite results. Strikingly, dual luciferase reporter assay showed that HULC was a sponge of miR-377-5p. Subsequently, mechanism experiments revealed that NLRP3/Caspase‑1/IL‑1β was a target axis of miR-377-5p. In vitro, the protective effect of HULC overexpression on H9c2 cell viability and inflammation was offset by miR-377-5p silencing. Finally, rescue assay suggested that HULC-miR-377-5p -NLRP3/Caspase‑1/IL‑1β axis regulated the apoptosis and inflammation of H/R-induced H9c2 cells. Conclusions Overall, these results indicate that the protective effect of HULC against myocardial I/R injury and H/R cardiomyocyte apoptosis partially relies on the inhibition of NLRP3/Caspase‑1/IL‑1β signaling pathway.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.