Abstract

Transient receptor potential M5 (TRPM5), a monovalent cation channel, is primarily activated by increases in intracellular calcium. However, we found unexpectedly that allyl isothiocyanate (AITC) and structural analogs triggered a membrane potential and calcium dye responses in TRPM5-HEK cells (AITC EC₅₀ = 9.0 ± 2.4 μM, n = 5). Although AITC and its analogs were more potent on transient receptor potential A1 (TRPA1)-HEK cells (AITC EC₅₀ = 0.23 ± 0.03 μM, n = 4), the rank order potency of these compounds were similar for TRPM5- and TRPA1-HEK cells. No response to these compounds was seen in parental HEK cells, TRPM5-CHO cells, and TRPM4b-, TRPM8-, or TRPV1-transfected HEK cells. An AITC-evoked current in TRPM5-HEK cells was confirmed in whole-cell voltage clamp recording. AITC elicited an intracellular calcium increase that was not dependent on phorpholipase C(β)₂ (PLC(β)₂) activation but was dependent on extracellular calcium concentration. TRPA1 mRNA was upregulated fourfold in TRPM5-HEK cells compared with parental cells. In contrast, TRPA1 was not upregulated in HEK cells transfected in a similar manner with TRPV1 or TRPM8 genes. The AITC response was blocked by a TRPA1 inhibitor and reduced by a TRPM5 inhibitor and by targeted TRPA1 siRNA. These results suggest that TRPM5 may play a role in upregulating endogenous expression of TRPA1, that TRPA1 activation may be an additional trigger for co-expressed calcium-dependent ion channels such as TRPM5, and that TRPM5 may amplify responses to TRPA1 ligands.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call