Abstract

The human superoxide dismutase 1 (SOD1) gene is responsible for neutralizing supercharged oxygen radicals within the cell. Mutation in SOD1 gene causes amyotrophic lateral sclerosis (ALS). Recent studies have shown involvement of the cerebellum in ALS, although the cerebellar contribution in SOD1 transgenic mice remains unclear. Using immunohistopathology, we investigated the Purkinje cell phenotype in the vermis of the SOD1 transgenic mice cerebellum. Calbindin 1 (Calb1) and three well-known zone and stripe markers, zebrin II, HSP25, and PLCβ4 have been used to explore possible alteration in zone and stripe. Here we show that Calb1 expression is significantly reduced in a subset of the Purkinje cells that is almost aligned with the cerebellar zones and stripes pattern. The Purkinje cells of SOD1 transgenic mice display a pattern of Calb1 down-regulation, which seems to proceed to Purkinje cell degeneration as the mice age. The onset of Calb1 down-regulation in Purkinje cells begins from the central zone and continues into the nodular zone, however it has not been observed in the anterior and posterior zones. In a subgroup of SOD1 transgenic mice in which gait unsteadiness was apparent, down-regulation of Calb1 is seen in a subset of PLCβ4+ Purkinje cells in the anterior zone. These observations suggest that the Calb1− subset of Purkinje cells in the anterior zone, which receives somatosensory input, causes unsteady gait. Our data suggest that human SOD1 overexpression leads to Calb1 down-regulation in the zone and strip pattern and raise the question of whether SOD1 overexpression leads to Purkinje cells degeneration.

Highlights

  • The human superoxide dismutase 1 (SOD1) gene is located on chromosome 21 and functions to produce the enzyme Cu/Zn SOD1, which neutralizes superoxide radicals within cells

  • We found that wt SOD1 Tg mice showed abnormalities in the cerebellum compared to normal mice

  • Wt SOD1 Tg mice showed a unique pattern in which Calbindin 1 (Calb1) down-regulation began in the CZ and progressed to the Nodular zone (NZ), which is common in both with and without unsteady gait groups

Read more

Summary

Introduction

The human superoxide dismutase 1 (SOD1) gene is located on chromosome 21 and functions to produce the enzyme Cu/Zn SOD1, which neutralizes superoxide (oxygen) radicals within cells. Mutations in this gene may cause the enzyme to gain toxic properties that are associated with rare familial motor neuron disease/amyotrophic lateral sclerosis (ALS) in humans (Rotunno and Bosco, 2013). The involvement of the cerebellum in ALS was recently reviewed by Prell and Grosskreutz (2013). Mouse models of human SOD1 mutations are valuable for understanding multisystem involvement and they provide significant insights into the mechanisms of ALS (Pioro and Mitsumoto, 1995). The most prominent alterations of tau expression were reported in the cerebellum (Baranczyk-Kuzma et al, 2007)

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call