Abstract

Vascular calcification is one of the most common effects of macrovascular complications in patients in aging with chronic kidney disease and diabetes. Previous studies showed that HOTAIR attenuated vascular calcification via the Wnt/β-catenin-signaling pathway, yet the molecular mechanism has not been fully elucidated. This study aimed to identify the explicit molecular mechanism underlying HOTAIR regulated vascular calcification. In the phosphate (Pi)-induced calcification model of human aortic smooth muscle cells (HASMCs), we investigated whether HOTAIR was involved in the regulation of miR-126. The luciferase reporter was used to examine the effect of HOTAIR on miR-126 and miR-126 on Klotho 3'-UTR. Furthermore, we overexpressed Klotho to verify the regulation of Klotho on SIRT1, as well as their roles in mediating Pi-induced calcification in HASMCs via the Wnt/β-catenin signaling pathway. Finally, the results were verified in an in vivo mice calcification model. Overexpression of HOTAIR reduced the expression of miR-126 in Pi-induced HASMCs. Additionally, knockdown of miR-126 increased SIRT1 expression by regulating Klotho expression. An increased level of Klotho inhibited Wnt/β-catenin signaling pathway, which eventually attenuated Pi-induced HASMCs calcification. Luciferase reporter assay revealed that HOTAIR targeted miR-126 and miR-126 could directly target Klotho. Eventually, HOTAIR overexpression reversed Pi-induced calcium calcification in vivo mouse models. This study demonstrated that HOTAIR overexpression attenuated Pi-induced calcification by regulating the miR-126/Klotho/SIRT1 axis, thereby inhibiting the Wnt/β-catenin signaling pathway. It provides new potential target genes for the clinical treatment of vascular calcification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call