Abstract

Human mitochondrial glutaredoxin 2 (Grx2) catalyzes glutathione-dependent dithiol reaction mechanisms, reducing protein disulfides, and monothiol reactions, reducing mixed disulfides between proteins and GSH (de-/glutathionylation). Here, we have overexpressed Grx2 in HeLa cells in its mitochondrial form (mGrx2-HeLa) as well as a truncated cytosolic form, lacking the mitochondrial translocation signal (tGrx2-HeLa). The resulting clones were less susceptible to apoptosis induced by 2-deoxy- d-glucose (2-DG) or doxorubicin (Dox). Overexpression of Grx2 inhibited cytochrome c release and caspase activation induced by both agents. In addition, Grx2 prevented 2-DG- and Dox-induced loss of cardiolipin, the phospholipid anchoring cytochrome c to the inner mitochondrial membrane. Overexpression of mGrx2 provided better protection than tGrx2 overexpression, especially after treatment with 2-DG. We propose that Grx2 facilitates the maintenance of cellular redox homeostasis upon treatment with apoptotic agents, thereby preventing cardiolipin oxidation and cytochrome c release.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.