Abstract

Sepsis in humans and experimental animals is characterized by an acute inflammatory response. glucocorticoids (GCs) are widely used for the treatment of many inflammatory disorders, yet their effectiveness in sepsis is debatable. One of the major anti-inflammatory proteins induced by GCs is glucocorticoid-induced leucine zipper (GILZ, coded by the TSC22D3 gene). We found that TSC22D3 mRNA expression is downregulated in white blood cells of human sepsis patients. Interestingly, transgenic GILZ-overexpressing mice (GILZ-tg) showed better survival rates in the cecal ligation and puncture (CLP) model of mouse sepsis. To our surprise, GILZ had only mild anti-inflammatory effects in this model, as the systemic proinflammatory response was not significantly reduced in GILZ-tg mice compared with control mice. During CLP, we observed reduced bacterial counts in blood of GILZ-tg mice compared with control mice. We found increased expression of Tsc22d3 mRNA specifically in peritoneal exudate cells in the CLP model, as well as increased capacity for bacterial phagocytosis of CD45 GILZ-tg cells compared with CD45 GILZ-wt cells. Hence, we believe that the protective effects of GILZ in the CLP model can be linked to a more efficient phagocytosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.