Abstract

The pathologic hallmark of pseudoxanthoma elasticum (PXE) is ectopic mineralization of soft connective tissues. Recent studies have suggested that PXE is a metabolic disease, and perturbations in a number of circulatory factors have been postulated. One of them is fetuin-A, a 60-kDa glycoprotein synthesized in the liver and secreted into blood. Observations in targeted mutant mice (Ahsg(-/-)) and in cell culture model systems have shown that fetuin-A is a powerful anti-mineralization factor in circulation, and the serum levels of fetuin-A in patients with PXE as well as in a mouse model of PXE (Abcc6(-/-)) have been shown to be reduced by up to 30%. In this study, we tested the hypothesis that overexpression of fetuin-A in Abcc6(-/-) mice counteracts the ectopic mineralization. Delivery of an expression construct containing full-length mouse fetuin-A complementary DNA (cDNA), linked to a His-tag, to the liver of these mice resulted in elevated serum levels of this protein. As a consequence, soft tissue mineralization, which is a characteristic of Abcc6(-/-) mice, was reduced by approximately 70% at 12 weeks of age, but the effect was transient when examined 4 weeks later. The results suggest that normalization of serum fetuin-A, either through gene therapy approaches or by direct protein delivery to the circulation, may offer strategies for treating PXE and perhaps other heritable disorders of soft tissue mineralization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call