Abstract

bHLH transcription factors play important roles in the abiotic stress response in plants, but their characteristics and functions in Tartary buckwheat (Fagopyrum tataricum), a traditional coarse cereal with a strong stress tolerance, haven't been sufficiently studied. Here, we found that the expression of a bHLH gene, FtbHLH2, was induced significantly by cold treatments in Tartary buckwheat seedlings. Subcellular localization indicated that FtbHLH2 localized in nucleus. Its overexpression in Arabidopsis increased tolerance to cold. The Arabidopsis plants overexpressing FtbHLH2 displayed higher root length and photosynthetic efficiency, and had lower malondialdehyde (MDA) and reactive oxygen species (ROS) after cold treatment compared to wild type (WT) plants. Meanwhile, the expression levels of some stress-related genes in transgenic plants were remarkably higher than that in wild type under normal and/or stress conditions. Furthermore, transgenic Arabidopsis lines with the FtbHLH2 promoter had higher GUS activity after cold stress. On the whole, the results suggest that FtbHLH2 may play a positive regulatory in cold stress of Tartary buckwheat.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.