Abstract

The telomerase RNA subunit (TR) is overexpressed in many tumors; however, the contribution of TR in cancer formation remains elusive. The most frequent clinically diagnosed cancer in the animal kingdom is caused by the highly oncogenic herpesvirus Marek's disease virus (MDV). MDV encodes a TR (vTR) that plays an important role in virus-induced tumorigenesis and shares 88% sequence identity with its cellular homologue. To determine if the cellular TR possesses pro-oncogenic activity, we replaced vTR with the cellular homologue in the virus genome. Insertion of cellular TR resulted in a strong overexpression in virus infected cells, while virus replication was not affected. Strikingly, cellular TR promoted tumor formation as efficient as vTR, while tumorigenesis was severely impaired in the absence of vTR. Our data provide the first evidence that overexpression of cellular TR can contribute to tumor formation in vivo using this natural virus-host model for herpesvirus-induced oncogenesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.