Abstract

Rubisco catalyzes the fixation of CO2 into organic compounds that are used for plant growth and the production of agricultural products, and specific sugar-phosphate derivatives bind tightly to the active sites of Rubisco, locking the enzyme in a catalytically inactive conformation. 2-carboxy-d-arabinitol-1-phosphate phosphatase (CA1Pase) dephosphorylates such tight-binding inhibitors, contributing to the maintenance of Rubisco activity. Here, we investigated the hypothesis that overexpressing ca1pase would decrease the abundance of Rubisco inhibitors, thereby increasing the activity of Rubisco and enhancing photosynthetic performance and productivity in wheat (Triticum aestivum). Plants of four independent wheat transgenic lines overexpressing ca1pase showed up to 30-fold increases in ca1pase expression compared to the wild type. Plants overexpressing ca1pase had lower numbers of Rubisco tight-binding inhibitors and higher Rubisco activation state than the wild type; however, there were 17% to 60% fewer Rubisco active sites in the four transgenic lines than in the wild type. The lower Rubisco content in plants overexpressing ca1pase resulted in lower initial and total carboxylating activities measured in flag leaves at the end of the vegetative stage and lower aboveground biomass and grain yield measured in fully mature plants. Hence, contrary to what would be expected, ca1pase overexpression decreased Rubisco content and compromised wheat grain yields. These results support a possible role for Rubisco inhibitors in protecting the enzyme and maintaining an adequate number of Rubisco active sites to support carboxylation rates in planta.

Highlights

  • Rubisco catalyzes the fixation of CO2 into organic compounds that are used for plant growth and the production of agricultural products, and specific sugar-phosphate derivatives bind tightly to the active sites of Rubisco, locking the enzyme in a catalytically inactive conformation. 2-carboxy-D-arabinitol-1-phosphate phosphatase (CA1Pase) dephosphorylates such tightbinding inhibitors, contributing to the maintenance of Rubisco activity

  • We demonstrate that ca1pase overexpression does decrease the quantity of Rubisco inhibitors in vivo, but it decreases the number of Rubisco active sites in wheat leaves and reduces biomass production and grain yield

  • We investigated the impact of increased expression of CA1Pase on the regulation and abundance of Rubisco and on crop yield in wheat

Read more

Summary

Introduction

Rubisco catalyzes the fixation of CO2 into organic compounds that are used for plant growth and the production of agricultural products, and specific sugar-phosphate derivatives bind tightly to the active sites of Rubisco, locking the enzyme in a catalytically inactive conformation. 2-carboxy-D-arabinitol-1-phosphate phosphatase (CA1Pase) dephosphorylates such tightbinding inhibitors, contributing to the maintenance of Rubisco activity. We investigated the hypothesis that overexpressing ca1pase would decrease the abundance of Rubisco inhibitors, thereby increasing the activity of Rubisco and enhancing photosynthetic performance and productivity in wheat (Triticum aestivum). Contrary to what would be expected, ca1pase overexpression decreased Rubisco content and compromised wheat grain yields. These results support a possible role for Rubisco inhibitors in protecting the enzyme and maintaining an adequate number of Rubisco active sites to support carboxylation rates in planta. A number of recent studies have been successful in the use of genetic manipulation of photosynthetic enzymes to improve genetic yield potential by increasing carbon assimilation and biomass production (Nuccio et al, 2015; Simkin et al, 2015; Kromdijk et al, 2016; Driever et al, 2017). Estimates from modeling and in vivo experimentation suggest that improving the regulation of Rubisco activity has the potential to improve carbon assimilation by as much as 21% (Reynolds et al, 2009; Taylor and Long, 2017)

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.