Abstract

Transplantation of neural stem cells (NSCs) is a promising therapy for ischemic stroke. However, the effectiveness of this approach is limited by grafted cell death. Breast cancer susceptibility protein 1 (BRCA1) could suppress apoptosis in neural progenitors and modulate oxidative stress in neurons. In this study, we found that BRCA1 was upregulated by oxygen-glucose deprivation/reoxygenation (OGD/R). Overexpression of BRCA1 in NSCs reduced cell apoptosis and oxidative stress after OGD/R insult. The molecule overexpression also stimulated cellular proliferation in OGD/R NSCs and increased the survival rate of grafted cells. Further, the transplantation of BRCA1-transfected NSCs into mice with ischemic stroke increased brain-derived neurotropic factor and nerve growth factor expression in the brain and elicited neurological function improvement. In addition, we found that RING finger domain and BRCT domain of BRCA1 could physically interact with p53 in NSCs. The cross talk between BRCA1 RING finger domain and p53 was responsible for p53 ubiquitination and degradation. Our findings indicate that modification with BRCA1 could enhance the efficacy of NSCs transplantation in ischemic stroke.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.