Abstract

BackgroundPlatinum-based therapy is an effective treatment for a subset of triple-negative breast cancer and ovarian cancer patients. In order to increase response rate and decrease unnecessary use, robust biomarkers that predict response to therapy are needed. Patients and methodsWe performed an integrated genomic approach combining differential analysis of gene expression and DNA copy number in sensitive compared with resistant triple-negative breast cancers in two independent neoadjuvant cisplatin-treated cohorts. Functional relevance of significant hits was investigated in vitro by overexpression, knockdown and targeted inhibitor treatment. ResultsWe identified two genes, the Bloom helicase (BLM) and Fanconi anemia complementation group I (FANCI), that have both increased DNA copy number and gene expression in the platinum-sensitive cases. Increased level of expression of these two genes was also associated with platinum but not with taxane response in ovarian cancer. As a functional validation, we found that overexpression of BLM promotes DNA damage and induces sensitivity to cisplatin but has no effect on paclitaxel sensitivity. ConclusionsA biomarker based on the expression levels of the BLM and FANCI genes is a potential predictor of platinum sensitivity in triple-negative breast cancer and ovarian cancer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.