Abstract
Mechanosensory hair cells of the inner ear are especially sensitive to death induced by exposure to aminoglycoside antibiotics. This aminoglycoside-induced hair cell death involves activation of an intrinsic program of cellular suicide. Aminoglycoside-induced hair cell death can be prevented by broad-spectrum inhibition of caspases, a family of proteases that mediate apoptotic and programmed cell death in a wide variety of systems. More specifically, aminoglycoside-induced hair cell death requires activation of caspase-9. Caspase-9 activation requires release of mitochondrial cytochrome c into the cytoplasm, indicating that aminoglycoside-induced hair cell death is mediated by the mitochondrial (or "intrinsic") cell death pathway. The Bcl-2 family of pro-apoptotic and anti-apoptotic proteins are important upstream regulators of the mitochondrial apoptotic pathway. Bcl-2 is an anti-apoptotic protein that localizes to the mitochondria and promotes cell survival by preventing cytochrome c release. Here we have utilized transgenic mice that overexpress Bcl-2 to examine the role of Bcl-2 in neomycin-induced hair cell death. Overexpression of Bcl-2 significantly increased hair cell survival following neomycin exposure in organotypic cultures of the adult mouse utricle. Furthermore, Bcl-2 overexpression prevented neomycin-induced activation of caspase-9 in hair cells. These results suggest that the expression level of Bcl-2 has important effects on the pathway(s) important for the regulation of aminoglycoside-induced hair cell death.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.