Abstract

The aim of this study was to determine whether decreasing intestinal epithelial apoptosis in sepsis would alter mortality rates. The roles of the antiapoptotic protein Bcl-2 and the "executioner" protease caspase-3 in sepsis-induced gut cell death also were evaluated. Prospective, randomized, controlled trial. Animal laboratory in an academic medical center. Transgenic mice that overexpress Bcl-2 throughout the small intestinal epithelium (n = 23) and littermate controls (n = 27) were subjected to cecal ligation and puncture (CLP) and followed for 8 days to assess survival. A second group of transgenic (n = 15) and littermate animals (n = 15) were subjected to CLP and were killed between 16 and 48 hrs postoperatively to assess for intestinal apoptosis and active caspase-3 staining. Survival of transgenic animals was 83% 8 days after CLP compared with 44% for littermate controls (p < .005). Survival curves between the two groups of animals began diverging within 24 hrs. Overexpression of Bcl-2 was associated with a significant decrease in apoptosis between 16 and 24 hrs post-CLP (p < .05) as well as decreased staining for active caspase-3. Decreasing intestinal epithelial cell death via overexpression of Bcl-2 improves survival in septic mice. The gut may play a central role in the pathophysiology of sepsis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call