Abstract

microRNAs are powerful regulators of growth, development, and stress responses in plants. The Arabidopsis thaliana microRNA miR167 was previously found to regulate diverse processes including flower development, root development, and response to osmotic stress by controlling the patterns of expression of its target genes AUXIN RESPONSE FACTOR 6 (ARF6), ARF8, and IAA‐Ala RESISTANT 3. Here, we report that miR167 also modulates defense against pathogens through ARF6 and ARF8. miR167 is differentially expressed in response to the bacterial pathogen Pseudomonas syringae, and overexpression of miR167 confers very high levels of resistance. This resistance appears to be due to suppression of auxin responses and is partially dependent upon salicylic acid signaling, and also depends upon altered stomatal behavior in these plants. Closure of stomata upon the detection of P. syringae is an important aspect of the basal defense response, as it prevents bacterial cells from entering the leaf interior and causing infection. Plants overexpressing miR167 constitutively maintain small stomatal apertures, resulting in very high resistance when the pathogen is inoculated onto the leaf surface. Additionally, the systemic acquired resistance (SAR) response is severely compromised in plants overexpressing miR167, in agreement with previous work showing that the activation of SAR requires intact auxin signaling responses. This work highlights a new role for miR167, and also emphasizes the importance of hormonal balance in short‐ and long‐term defense and of stomata as an initial barrier to pathogen entry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.