Abstract

The carcinogenic polycylic aromatic hydrocarbon, benzo(a)pyrene (BaP), has been shown to generate reactive oxygen species (ROS) and accelerate the development of atherosclerosis. To assess the causal role of BaP-generated ROS in this process, we evaluated atherosclerotic metrics in apolipoprotein E-deficient ( ApoE −/− ) mice with or without overexpression of Cu/Zn-superoxide dismutase (Cu/Zn-SOD) and/or catalase. Without BaP, aortic atherosclerotic lesions were smaller in ApoE −/− mice overexpressing catalase or both Cu/Zn-SOD and catalase than in those overexpressing neither or Cu/Zn-SOD only. After treating with BaP or vehicle for 24 weeks, mean lesion sizes in the aortic tree and aortic root of ApoE −/− mice were increased by approximately 60% and 40%, respectively. BaP also increased the levels of oxidized lipids in the aortic tree of ApoE −/− mice and increased the frequency of advanced lesions. In contrast, BaP did not significantly alter lipid peroxidation levels or atherosclerotic lesions in the aortas of ApoE −/− mice overexpressing Cu/Zn-SOD and/or catalase. Overexpression of Cu/Zn-SOD and/or catalase also inhibited BaP-induced expression of cell adhesion molecules in aortas and endothelial cells, and reduced BaP-induced monocyte adhesion to endothelial cells. These observations, together with the functions of catalase and Cu/Zn-SOD to scavenge hydrogen peroxide and superoxide anions, implicate a causal role of ROS in the pathogenesis of BaP-induced atherosclerosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.