Abstract

The dendritic arbors of spinal motoneurons are dynamically regulated by a variety of factors, and several lines of evidence indicate that trophic interactions with the target musculature are of central importance. In highly androgen-sensitive motoneuron populations, androgens are thought to regulate motoneuron dendrites through their action at the receptor-enriched target musculature. Using rats transgenically modified to overexpress androgen receptor (AR) in skeletal muscle, we directly tested the hypothesis that the enhanced expression of AR in the target musculature can underlie the androgenic regulation of motoneuron dendritic morphology. The morphology of motoneurons innervating the quadriceps muscle was examined in wild-type (WT) rats as well as in rats that had been transgenically modified to overexpress ARs in their skeletal musculature. Motoneurons innervating the vastus lateralis muscle of the quadriceps in gonadally intact male rats, and castrated males with or without androgen replacement, were labeled with cholera toxin-conjugated horseradish peroxidase, and dendritic arbors were reconstructed in three dimensions. In WT rats, quadriceps motoneuron dendrites were insensitive to hormonal manipulation. In contrast, quadriceps motoneuron dendrites in gonadally intact transgenic males were larger than those of WT males. Furthermore, overexpression of ARs in the quadriceps muscle resulted in androgen sensitivity in dendrites, with substantial reductions in dendritic length occurring after castration; this reduction was prevented with testosterone replacement. Thus, it appears that the androgen sensitivity of motoneuron dendrites is conferred indirectly via the enrichment of ARs in the musculature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.