Abstract

Amplified in breast cancer 1 (AIB1, also known as ACTR, SRC-3, RAC-3, TRAM-1, p/CIP) is a member of the p160 nuclear receptor coactivator family involved in transcriptional regulation of genes activated through steroid receptors, such as estrogen receptor alpha (ER(alpha)). The AIB1 gene and a more active N-terminally deleted isoform (AIB1-Delta3) are overexpressed in breast cancer. To determine the role of AIB1-Delta3 in breast cancer pathogenesis, we generated transgenic mice with human cytomegalovirus immediate early gene 1 (hCMVIE1) promoter-driven over-expression of human AIB1/ACTR-Delta3 (CMVAIB1/ACTR-Delta3 mice). AIB1/ACTR-Delta3 transgene mRNA expression was confirmed in CMV-AIB1/ACTR-Delta3 mammary glands by in situ hybridization. These mice demonstrated significantly increased mammary epithelial cell proliferation (P < 0.003), cyclin D1 expression (P = 0.002), IGF-I receptor protein expression (P = 0.026), mammary gland mass (P < 0.05), and altered expression of CCAAT/enhancer binding protein isoforms (P = 0.029). At 13 months of age, mammary ductal ectasia was found in CMV-AIB1/ACTR-Delta3 mice, but secondary and tertiary branching patterns were normal. There were no changes in the expression patterns of either ER(alpha) or Stat5a, a downstream mediator of prolactin signaling. Serum IGF-I levels were not altered in the transgenic mice. These data indicate that overexpression of the AIB1/ACTR-Delta3 isoform resulted in altered mammary epithelial cell growth. The observed changes in cell proliferation and gene expression are consistent with alterations in growth factor signaling that are thought to contribute to either initiation or progression of breast cancer. These results are consistent with the hypothesis that the N-terminally deleted isoform of AIB1 can play a role in breast cancer development and/or progression.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.