Abstract

The whey acidic protein (WAP) gene is expressed in mammary epithelial cells at late pregnancy and throughout lactation. We have generated transgenic mice in which a mouse WAP transgene is expressed precociously in pregnancy. From 13 founder mice bearing WAP transgenes, two female founders and the daughters from a male founder failed to lactate and nurture their offspring. We named this phenotype milchlos. Mammary tissue from postpartum milchlos mice was underdeveloped, contained too few alveoli and resembled the glands of non-transgenic mid-pregnant mice. The hypothesis that alveolar development in milchlos mice was functionally arrested in a prelactational state is consistent with low levels of α-lactalbumin mRNA, and an unidentified keratin RNA in mammary tissue from postpartum mice. Defects in alveolar function in milchlos mice were detected at mid-pregnancy; in non-transgenic mice, WAP was secreted into the alveolar lumen but remained preferentially in the cytoplasm of the alveolar epithelial cells in the milchlos mice. Since deregulated WAP expression resulted in impaired mammary development, it is possible that WAP plays a regulatory role in the terminal differentiation and development of mammary alveolar cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.