Abstract

BackgroundYABBY genes play important roles in the growth and polar establishment of lateral organs such as leaves and floral organs in angiosperms. However, the functions of YABBY homologous genes are largely unknown in soybean.ResultsIn this study, we identified GmFILa encoding a YABBY transcription factor belonging to FIL subfamily. In situ mRNA hybridization analysis indicated that GmFILa had specific expression patterns in leaf as well as in flower bud primordia. Ectopic expression of GmFILa in Arabidopsis thaliana altered the partial abaxialization of the adaxial epidermises of leaves. Besides, GmFILa transgenic plants also exhibited longer flowering period and inhibition of shoot apical meristem (SAM) development compared to the wild type plants. Digital expression data and quantitative real-time polymerase chain reaction (qRT-PCR) analysis demonstrated that the expression of GmFILa was induced by biotic and abiotic stresses and hormone treatments. Transcriptome analysis suggested that overexpressing GmFILa yielded 82 significant differentially expressed genes (DEGs) in Arabidopsis leaves, which can be classified into transcription factors, transporters, and genes involved in growth and development, metabolism, signal transduction, redox reaction and stress response.ConclusionsThese results not only demonstrate the roles of GmFILa involved in leaf adaxial-abaxial polarity in Arabidopsis, but also help to reveal the molecular regulatory mechanism of GmFILa based on the transcriptomic data.

Highlights

  • YABBY genes play important roles in the growth and polar establishment of lateral organs such as leaves and floral organs in angiosperms

  • Compared with Arabidopsis (5 members) [12], rice (Oryza stative L.) (8 members) [37], maize (Zea mays L.) (13 members) [38] and tomato (9 members) [39], soybean contains the most numerous members in YABBY gene family, which may be due to the two large-scale genome replications in soybean [40]

  • We analyzed the duplication patterns of soybean YABBY genes and found that all GmYABBY genes were derived from segmental duplications without tandem duplications (Additional file 1: Figure S1 and Table S1)

Read more

Summary

Introduction

YABBY genes play important roles in the growth and polar establishment of lateral organs such as leaves and floral organs in angiosperms. Several regulators controlling leaf abaxial-adaxial polarity and leaf growth have been identified in Arabidopsis, such as AS2 (ASYMMETRIC LEAVES2), class III HD-Zip, KANADI, ARF3/4 (AUXIN RESPONSE FACTOR), YABBY and small non-coding RNAs [1,2,3,4,5,6] Among these different types of regulators, YABBY family is specific to seed plants [7], and contains zinc finger-like and YABBY domains [8, 9]. Two wild Chinese Vitis pseudoreticulata genes, VpYABBY1 and VpYABBY2, belonging to FIL and YAB2 subfamily, were shown to have divergent functions in the control of lateral organ development: VpYABBY1 regulates leaf adaxial-abaxial polarity, while VpYABBY2 may play an important role in carpel growth and grape berry morphogenesis [27]. The Arabidopsis INO was demonstrated to be necessary for polarity determination in the ovule [35]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call