Abstract
Harpin proteins secreted by plant-pathogenic gram-negative bacteria induce diverse plant defenses against different pathogens. Harpin-induced 1 (HIN1) gene highly induced in tobacco after application of Harpin protein is involved in a common plant defense pathway. However, the role of HIN1 against Tobacco mosaic virus (TMV) remains unknown. In this study, we functionally characterized the Nicotiana benthamiana HIN1 (NbHIN1) gene and generated the transgenic tobacco overexpressing the NbHIN1 gene. In a subcellular localization experiment, we found that NbHIN1 localized in the plasma membrane and cytosol. Overexpression of NbHIN1 did not lead to observed phenotype compared to wild type tobacco plant. However, the NbHIN1 overexpressing tobacco plant exhibited significantly enhanced resistance to TMV infection. Moreover, RNA-sequencing revealed the transcriptomic profiling of NbHIN1 overexpression and highlighted the primary effects on the genes in the processes related to biosynthesis of amino acids, plant-pathogen interaction and RNA transport. We also found that overexpression of NbHIN1 highly induced the expression of NbRAB11, suggesting that jasmonic acid signaling pathway might be involved in TMV resistance. Taken together, for the first time we demonstrated that overexpressing a pathogenesis-related gene NbHIN1 in N. benthamiana significantly enhances the TMV resistance, providing a potential mechanism that will enable us to engineer tobacco with improved TMV resistance in the future.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.