Abstract

Shiverer ( shi) mice, which are neurologically mutant, lack a large portion of the gene for the myelin basic proteins (MBPs), have virtually no myelin in their central nervous system (CNS), and shiver, undergo seizures, and die early. At least five types of MBPs (21.5, 18.5, 17.3, 17.2 and 14.0 kDa) are known to be generated through alternative splicing from a single MBP gene. We have produced transgenic shi mice carrying a cDNA encoding mouse 14-kDa MBP isoform, the most abundant form of MBPs, under control of a mouse MBP gene promoter, and showed that expression of the 14-kDa MBP can restore CNS myelination. To test whether the 17.2-kDa MBP isoform, one of the minor components of MBPs, can also elicit myelination in homozygous shi mutants, we produced seven independent transgenic shi mice carrying cDNA encoding the mouse 17.2-kDa MBP isoform, and the transcription of which was driven by a mouse MBP gene promoter. The axons in the cerebellum of one transgenic line, which exhibited the highest expression of transgene-derived mRNA (∼50% of the level of total MBP mRNA in the normal mouse brain), were myelinated. This mouse exhibited nearly normal behavior. These findings indicate that the 17.2-kDa MBP isoform, even when the only 17.2-kDa MBP isoform is present, has the ability to elicit CNS myelination in transgenic shi mice. This transgenic strategy will be useful for elucidating the role of each type of MBP isoform in CNS myelinogenesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.