Abstract

ABSTRACTMicroalgae accumulate energy-reserved molecules, such as triacylglycerol and carbohydrates, which are suitable feedstocks for renewable energies such as biodiesel and bioethanol. However, the molecular mechanisms behind the microalgae accumulating these molecules require further elucidation. Recently, we have reported that the target of rapamycin (TOR)-signaling is a major pathway to regulate floridean starch synthesis by changing the phosphorylation status of CmGLG1, a glycogenin generally required for the initiation of starch/glycogen synthesis, in the unicellular red alga Cyanidioschyzon merolae. In the present study, we confirmed that another glycogenin, CmGLG2, is also involved in the floridean starch synthesis in this alga, since the CmGLG2 overexpression resulted in a two-fold higher floridean starch content in the cell. The results indicate that both glycogenin isoforms play an important role in floridean starch synthesis in C. merolae, and would be a potential target for improvement of floridean starch production in microalgae.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.