Abstract

Brassinosteroids (BRs) function importantly in plant growth and development, but the roles in regulating fruit development and anthocyanin pigmentation remain unclear. Eggplant (Solanum melongena L.) is an important Solanaceae vegetable crop rich in anthocyanins. The fruit size and coloration are important agronomic traits for eggplant breeding. In this study, transgenic eggplant exhibiting endogenous BRs deficiency was created by overexpressing a heterologous BRs-inactivating enzyme gene GhPAG1 driven by CaMV 35 S promoter. 35 S::GhPAG1 eggplant exhibited severe dwarfism, reduced fruit size, and less anthocyanin accumulation. Microscopic observation showed that the cell size of 35 S::GhPAG1 eggplant was significantly reduced compared to WT. Furthermore, the levels of IAA, ME-IAA, and active JAs (JA, JA-ILE, and H2JA) all decreased in 35 S::GhPAG1 eggplant fruit. RNA-Seq analyses showed a decrease in the expression of genes involved in cell elongation, auxin signaling, and JA signaling. Besides, overexpression of GhPAG1 significantly downregulated anthocyanin biosynthetic genes and associated transcription regulators. Altogether, these results strongly suggest that endogenous brassinosteroid deficiency arising from GhPAG1 overexpression impacts eggplant fruit development and anthocyanin coloration mainly by altering hormone homeostasis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call