Abstract

A cDNA coding for 3-ketoacyl-acyl-carrier protein (ACP) synthase III (KAS III) from spinach (Spinacia oleracea; So KAS III) was used to isolate two closely related KAS III clones (Ch KAS III-1 and Ch KAS III-2) from Cuphea hookeriana. Both Ch KAS IIIs are expressed constitutively in all tissues examined. An increase in the levels of 16:0 was observed in tobacco (Nicotiana tabacum, WT-SR) leaves overexpressing So KAS III when under the control of the cauliflower mosaic virus-35S promoter and in Arabidopsis and rapeseed (Brassica napus) seeds overexpressing either of the Ch KAS IIIs driven by napin. These data indicate that this enzyme has a universal role in fatty acid biosynthesis, irrespective of the plant species from which it is derived or the tissue in which it is expressed. The transgenic rapeseed seeds also contained lower levels of oil as compared with the wild-type levels. In addition, the rate of lipid synthesis in transgenic rapeseed seeds was notably slower than that of the wild-type seeds. The results of the measurements of the levels of the acyl-ACP intermediates as well as any changes in levels of other fatty acid synthase enzymes suggest that malonyl-ACP, the carbon donor utilized by all the 3- ketoacyl-ACP synthases, is limiting in the transgenic plants. This further suggests that malonyl-coenzyme A is a potential limiting factor impacting the final oil content as well as further extension of 16:0.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.