Abstract

Rare sugars are used for many industrial and medical purposes and are produced by the interconversion between aldoses and ketoses catalyzed by sugar and sugar-phosphate isomerases. Recently, Clostridium thermocellum d-ribose-5-phosphate isomerase (CTRPI), an aldose-ketose isomerase, was cloned in order to synthesize d-allose and its substrate specificity was further characterized for industrial usage. CTRPI has a novel substrate specificity that differs from those of other isomerases, which have broad substrate specificities. CTRPI prefers aldose substrates such as l-talose, d-ribose and d-allose. CTRPI was purified and crystallized in order to determine its three-dimensional structure and thus to elucidate its enzymatic reaction mechanism and understand its substrate specificity. The crystal belonged to the trigonal space group P3(2)21, with unit-cell parameters a = b = 69.5, c = 154.4 angstrom, and diffracted to 1.9 angstrom resolution. According to Matthews coefficient calculations, the crystallographic structure consists of a dimer in the asymmetric unit, with a V(M) of 3.2 angstrom(3) Da(-1) and a solvent content of 61.7%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call