Abstract

Cytochrome c(z) is found in green sulfur photosynthetic bacteria, and is considered to be the only electron donor to the special pair P840 of the reaction center. It consists of an N-terminal transmembrane domain and a C-terminal soluble domain that binds a single heme group. Large scale expression of the C-terminal functional domain of the cytochrome c(z) (C-cyt c(z)) from the thermophilic bacterium Chlorobium tepidum has been achieved using the Escherichia coli expression system. The C-cyt c(z) expressed has been highly purified, and is stable at room temperature over 10 days of incubation for both reduced and oxidized forms. Spectroscopic measurements indicate that the heme iron in C-cyt c(z) is in a low-spin state and this does not change with the redox state. (1)H-NMR spectra of the oxidized C-cyt c(z) exhibited unusually large paramagnetic chemical shifts for the heme methyl protons in comparison with those of other Class I ferric cytochromes c. Differences in the (1)H-NMR linewidth were observed for some resonances, indicating different dynamic environments for these protons. Crystals of the oxidized C-cyt c(z) were obtained using ammonium sulfate as a precipitant. The crystals diffracted X-rays to a maximum resolution of 1.2 A, and the diffraction data were collected to 1.3 A resolution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call