Abstract
Transgenic glyphosate-tolerant plants overproducing EPSPS (5-enolpyruvylshikimate-3-phosphate synthase) may exhibit enhanced fitness in glyphosate-free environments. If so, introgression of transgenes overexpressing EPSPS into wild relative species may lead to increased competitiveness of crop-wild hybrids, resulting in unpredicted environmental impact. Assessing fitness effects of transgenes overexpressing EPSPS in a model plant species can help address this question, while elucidating how overproducing EPSPS affects the fitness-related traits of plants. We produced segregating T2 and T3 Arabidopsis thaliana lineages with or without a transgene overexpressing EPSPS isolated from rice or Agrobacterium (CP4). For each of the three transgenes, we compared glyphosate tolerance, some fitness-related traits, and auxin (indole-3-acetic acid) content in transgene-present, transgene-absent, empty vector (EV), and parental lineages in a common-garden experiment. We detected substantially increased glyphosate tolerance in T2 plants of transgene-present lineages that overproduced EPSPS. We also documented significant increases in fecundity, which was associated with increased auxin content in T3 transgene-present lineages containing rice EPSPS genes, compared with their segregating transgene-absent lineages, EV, and parental controls. Our results from Arabidopsis with nine transgenic events provide a strong support to the hypothesis that transgenic plants overproducing EPSPS can benefit from a fecundity advantage in glyphosate-free environments. Stimulated biosynthesis of auxin, an important plant growth hormone, by overproducing EPSPS may play a role in enhanced fecundity of the transgenic Arabidopsis plants. The obtained knowledge is useful for assessing environmental impact caused by introgression of transgenes overproducing EPSPS from any GE crop into populations of its wild relatives.
Highlights
Engineered (GE) herbicide-tolerant crops are cultivated extensively over the world owing to their substantial agronomic, environmental, economic, health and social benefits (James, 2016)
The objectives of this study are to address the following questions: (1) Does overproduction of EPSPS increase glyphosate tolerance of the Arabidopsis plants in transgenic lineages? (2) Does overexpression of exogenous EPSPS genes enhance fitness of transgenic Arabidopsis plants? (3) If so, is enhanced fitness of the transgenic plants caused by the position effect of an inserted gene? (4) Do transgene-present lineages that overproduce EPSPS synthesize more auxin than transgene-absent lineages? Answers to these questions will increase our understanding of the general effects of overexpressing EPSPS genes on the phenotypes of plant species
Results from this study demonstrated that the transfer of overexpressing EPSPS genes isolated from different sources, namely rice (E or Em) and Agrobacterium (CP4), into A. thaliana plants substantially increased their tolerance to the glyphosate (Roundup R ) herbicide with considerable variation among the three EPSPS transgenes
Summary
Engineered (GE) herbicide-tolerant crops are cultivated extensively over the world owing to their substantial agronomic, environmental, economic, health and social benefits (James, 2016). Glyphosate-tolerance represents the world’s most widespread GE crop trait (Duke and Powles, 2008; Vats, 2015; James, 2016). The commercial cultivation of glyphosate-tolerant GE crops has greatly promoted the glyphosate application in agricultural ecosystems, arousing global concerns over its potential environmental impact. Many weed species have evolved glyphosate tolerance under selective pressure after long-term glyphosate applications (Duke and Powles, 2008; Délye et al, 2013). Some researchers posit little or no environmental impact from introgression of glyphosate-tolerance transgenes into wild relative populations because they believe that such transgenes offer no fitness advantage in natural ecosystems in the absence of glyphosate (Cerdeira and Duke, 2006; Vila-Aiub et al, 2014)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.