Abstract

Genetic studies with mouse models have shown that fibroblast growth factor receptor 2-IIIb (FGFR2-IIIb) plays crucial roles in lung development and differentiation. To evaluate the effect of FGFR2-IIIb in pig lung development, we employed somatic cell nuclear transfer (SCNT) technology to generate transgenic pig fetuses overexpressing the transmembrane (dnFGFR2-IIIb-Tm) and soluble (dnFGFR2-IIIb-HFc) forms of the dominant-negative human FGFR2-IIIb driven by the human surfactant protein C (SP-C) promoter, which was specifically expressed in lung epithelia. Eight dnFGFR2-IIIb-Tm transgenic and twelve dnFGFR2-IIIb-HFc transgenic pig fetuses were collected from three and two recipient sows, respectively. Repression of FGFR2-IIIb in lung epithelia resulted in smaller lobes and retardation of alveolarization in both forms of dnFGFR2-IIIb transgenic fetuses. Moreover, the dnFGFR2-IIIb-HFc transgenic ones showed more deterioration in lung development. Our results demonstrate that disruption of FGFR2-IIIb signaling in the epithelium impedes normal branching and alveolarization in pig lungs, which is less severe than the results observed in transgenic mice. The dnFGFR2-IIIb transgenic pig is a good model for the studies of blastocyst complementation as well as the mechanisms of lung development and organogenesis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.