Abstract

Tryptophan is one of the amino acids that cannot be produced in humans and has to be acquired primarily from plants. In Arabidopsis thaliana (Arabidopsis), the tryptophan synthase beta subunit (TSB) genes have been found to catalyze the biosynthesis of tryptophan. Here, we report the isolation and characterization of two TSB genes from Brassica oleracea (broccoli), designated BoTSB1 and BoTSB2. Overexpressing BoTSB1 or BoTSB2 in Arabidopsis resulted in higher tryptophan content and the accumulation of indole-3-acetic acid (IAA) and indole glucosinolates in rosette leaves. Therefore, the transgenic plants showed a series of high auxin phenotypes, including long hypocotyls, large plants and a high number of lateral roots. The spatial expression of BoTSB1 and BoTSB2 was detected by quantitative real-time PCR in broccoli and by expressing the β-glucuronidase reporter gene (GUS) controlled by the promoters of the two genes in Arabidopsis. BoTSB1 was abundantly expressed in vascular tissue of shoots and inflorescences. Compared to BoTSB1, BoTSB2 was expressed at a very low level in shoots but at a higher level in roots. We further investigated the expression response of the two genes to several hormone and stress treatments. Both genes were induced by methyl jasmonate (MeJA), salicylic acid (SA), gibberellic acid (GA), Flg22 (a conserved 22-amino acid peptide derived from bacterial flagellin), wounding, low temperature and NaCl and were repressed by IAA. Our study enhances the understanding of tryptophan biosynthesis and its regulation in broccoli and Arabidopsis. In addition, we provide evidence that TSB genes can potentially be a good tool to breed plants with high biomass and high nutrition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call