Abstract
High soil salinity is a major abiotic stress in plant agriculture worldwide. Here, we report the characterization of a novel aquaporin gene TaNIP (Triticum asetivum L. nodulin 26-like intrinsic protein), which was involved in salt tolerance pathways in plants. TaNIP was identified and cloned through the gene chip expression analysis of a salt-tolerant wheat mutant RH8706-49 under salt stress. Quantitative reverse transcription-PCR (Q-RT-PCR) was used to detect TaNIP expression under salt, drought, cold and ABA treatment. The overexpression of TaNIP in transgenic Arabidopsis produced higher salt tolerance than wild-type plants. Localization analysis showed that TaNIP proteins tagged with green fluorescent protein (GFP) were localized to the cell plasma membrane. Under salt stress treatment, TaNIP-overexpressing Arabidopsis accumulated higher K(+), Ca(2+) and proline contents and lower Na(+) level than the wild-type plants. The overexpression of TaNIP in transgenic Arabidopsis also up-regulated the expression of a number of stress-associated genes. Our results suggest that TaNIP plays an important role in salt tolerance in Arabidopsis and can also enhance plants' tolerance to other abiotic stresses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.