Abstract

Surges of nitric oxide compromise mitochondrial respiration primarily by competitive inhibition of oxygen binding to cytochrome c oxidase (complex IV) and are particularly injurious in neurons, which rely on oxidative phosphorylation for all their energy needs. Here, we show that transgenic overexpression of the neuronal globin protein, neuroglobin, helps diminish protein nitration, preserve mitochondrial function and sustain ATP content of primary cortical neurons challenged by extended nitric oxide exposure. Specifically, in transgenic neurons, elevated neuroglobin curtailed nitric oxide-induced alterations in mitochondrial oxygen consumption rates, including baseline oxygen consumption, consumption coupled with ATP synthesis, proton leak and spare respiratory capacity. Concomitantly, activation of genes involved in sensing and responding to oxidative/nitrosative stress, including the early-immediate c-Fos gene and the phase II antioxidant enzyme, heme oxygenase-1, was diminished in neuroglobin-overexpressing compared to wild-type neurons. Taken together, these differences reflect a lesser insult produced by similar concentrations of nitric oxide in neuroglobin-overexpressing compared to wild-type neurons, suggesting that abundant neuroglobin buffers nitric oxide and raises the threshold of nitric oxide-mediated injury in neurons.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call