Abstract
BackgroundCold inducible RNA-binding protein (CIRP) is a key protein in the hypothermic therapy. Highly expressed CIRP exerts a neuroprotective effect on neurons. The aim of this study is to provide the evidence of the protective effects of CIRP on the glial cells and explore the downstream pathway of CIRP.ResultsThe results of this study demonstrated that the cell viability of the glial cells with CIRP overexpression was increased significantly compared to the control. With CIRP overexpression, the epidermal growth factor (EGF) mRNA expression was found increasing significantly and the mRNA expressions of derived neurotrophic factor (BDNF), bcl-2, vascular endothelial growth factor (VEGF) and nerve growth factor (NGF) were not upregulated compared to the control. EGF and CIRP co-expression was demonstrated on the glial cells. With CIRP expression, EGF expression on the glial cells was increased statistically compared to the control.ConclusionCIRP overexpression increases the cell viability of the glial cells, exerting a neuroprotective effect. EGF expression is activated on the glial cells with CIRP overexpression, implying a pathway of CIRP neuroprotection via EGF activation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.