Abstract

Several recent reports suggest that black carbon (BC), which broadly encompasses charcoal, soot, and other forms of pyrogenic carbon, may constitute a significant proportion of the refractory carbon in soil and sedimentary organic matter. BC is a sink for biospheric and atmospheric carbon dioxide, and is intimately tied to the biogeochemical cycling of both carbon and oxygen through its role in organic matter cycling. Additionally, BC may represent a large fraction of the "missing carbon sink" in global carbon accounting. Here, we demonstrate that documented measurements of BC may be the result of methodological artifacts, which inadvertently overestimate the amount of BC. We found that a widely used thermal oxidative method can create a residue that falls under the operational definition of BC in samples that are relatively BC-free. Moreover, during this procedure, labile organic matter constituents are condensed into pyrogenic carbon, implying that the labile components are present in lesser quantities. These methodological deficiencies are promoting overestimates in the amount of refractory carbon in soil and sedimentary organic matter and may endorse inaccuracies in the rates of carbon fluxes, the mean residence times of terrestrial carbon, and organic matter burial rates in oceanic environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.