Abstract
The authors report a rare case of overdrainage of the CSF caused by the malfunction of a Codman-Hakim programmable valve (CHPV) following a 3-T MR imaging procedure. Nine years ago this 72-year-old woman underwent ventriculoperitoneal shunt placement with a CHPV system for hydrocephalus due to subarachnoid hemorrhage. The postoperative course was uneventful and the system functioned well. A radiograph obtained immediately after 3-T MR imaging revealed that the pressure control cam in the valve system was detached from the base plate. Intracranial hypotension syndrome occurred several hours after the MR imaging study, and a CT scan revealed a decrease in ventricle size. A revision of the system promptly resolved the symptoms, and a postoperative CT scan revealed that the ventricle size was restored to normal. Examination of the extracted valve showed a Y-shaped crack in the plastic housing as well as detachment of the white marker and cam from the base plate. A reduction in the power of the flat spring to press the valve ball led to CSF overdrainage because of a loss of support by the cam. Because the patient had incurred no head injury during the day and radiographic studies of the system 5 years previously had shown detachment of the white marker, damage to the system might have been caused by a past impact. These facts may indicate that the antimagnetic performance of the system could have decreased due to a previous impact and that the strong magnetic force in a 3-T MR imaging environment might have caused detachment of the cam.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.