Abstract
Simple stochastic models fit to time series of daily precipitation amount have a marked tendency to underestimate the observed (or interannual) variance of monthly (or seasonal) total precipitation. By considering extensions of one particular class of stochastic model known as a chain-dependent process, the extent to which this “overdispersion” phenomenon is attributable to an inadequate model for high-frequency variation of precipitation is examined. For daily precipitation amount in January at Chico, California, fitting more complex stochastic models greatly reduces the underestimation of the variance of monthly total precipitation. One source of overdispersion, the number of wet days, can be completely eliminated through the use of a higher-order Markov chain for daily precipitation occurrence. Nevertheless, some of the observed variance remains unexplained and could possibly be attributed to low-frequency variation (sometimes termed “potential predictability”). Of special interest is the fact that these more complex stochastic models still underestimate the monthly variance, more so than does an alternative approach, in which the simplest form of chain-dependent process is conditioned on an index of large-scale atmospheric circulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.