Abstract

We study the overdamped Brownian dynamics of particles moving in piecewise-defined potential energy landscapes U(x), where the height Q of each section is obtained from the exponential distribution p(Q)=aβexp(-aβQ), where β is the reciprocal thermal energy, and a>0. The averaged effective diffusion coefficient 〈D_{eff}〉 is introduced to characterize the diffusive motion: 〈x^{2}〉=2〈D_{eff}〉t. A general expression for 〈D_{eff}〉 in terms of U(x) and p(Q) is derived and then applied to three types of energy landscape: flat sections, smooth maxima, and sharp maxima. All three cases display a transition between subdiffusive and diffusive behavior at a=1, and a reduction to free diffusion as a→∞. The behavior of 〈D_{eff}〉 around the transition is investigated and found to depend heavily upon the shape of the maxima: Energy landscapes made up of flat sections or smooth maxima display power-law behavior, while for landscapes with sharp maxima, strongly divergent behavior is observed. Two aspects of the subdiffusive regime are studied: the growth of the mean squared displacement with time and the distribution of mean first-passage times. For the former, agreement between Brownian dynamics simulations and a coarse-grained equivalent was observed, but the results deviated from the random barrier model's predictions. The discrepancy could be a finite-time effect. For the latter, agreement between the characteristic exponent calculated numerically and that predicted by the random barrier model is observed in the large-amplitude limit.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.