Abstract

In Japan, the development of the 66-kV-class superconducting power cable was begun in 2008 as a national project. A high-temperature superconducting (HTS) power cable typically consists of a copper former, HTS conductor layers, electrical insulation layers, HTS shield layers, and copper shield layers. 66-kV-class superconducting power cables may be subjected to a fault current of 31.5 kA <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">rms</sub> for 2 s. Therefore, in order to ensure the stability and feasibility of superconducting power cables, we need to investigate these cables with respect to their thermal characteristics and current distribution under fault conditions. In this study, we carried out over-current experiments on a 2-m-long HTS model cable. We also performed numerical simulations on the model cable by using a computer program developed by us on the basis of a 3D finite element method (FEM) and an electrical circuit model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call