Abstract
In this paper, we investigate the impact of agent personality on the complex dynamics taking place in financial markets. Leveraging recent findings, we model the artificial financial market as a complex evolving network: we consider discrete dynamics for the node state variables, which are updated at each trading session, while the edge state variables, which define a network of mutual influence, evolve continuously with time. This evolution depends on the way the agents rank their trading abilities in the network. By means of extensive numerical simulations in selected scenarios, we shed light on the role of overconfident agents in shaping the emerging network topology, thus impacting on the overall market dynamics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.