Abstract

Human epidermal growth factor receptor (HER)-2 overexpression or amplification occurs in about 20% of all breast cancers and results in a worse prognosis. Nevertheless, anti-HER2 treatments have recently been developed, resulting in dramatic improvements in the clinical outcome of patients with HER2-positive breast cancer. Trastuzumab has shown efficacy in early and advanced breast cancer treatment and lapatinib is currently approved for the treatment of advanced disease. Other anti-HER2 agents are being investigated. Mechanisms of resistance to trastuzumab treatment include crosstalk with heterologous receptors and amplification of HER2 signalling; amplification of the phosphoinositide 3-kinase (PI3K)/AKT pathway; alteration in binding of trastuzumab to HER2; and loss of HER2 expression. Proposed mechanisms of resistance to lapatinib involve derepression and/or activation of compensatory survival pathways through increased PI3K/AKT or estrogen receptor (ER) signalling. Several strategies to overcome resistance to anti-HER2 treatment are in different phases of development and include treatment with pertuzumab, T-DM1 and mammalian target of rapamycin (mTOR) inhibitors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call