Abstract

Metamaterial-inspired near-field resonant parasitic (NFRP) electrically small antennas (ESAs) have been designed and experimentally validated to have not only high radiation efficiencies, but also multi-functionality, large bandwidths, high directivities and reconfigurability. These expanded capabilities have been attained by introducing more complex meta-structures, i.e., multiple NFRP elements loaded with fixed and tunable lumped elements, as well as active circuits. Different classes of passive and active NFRP ESAs that have successfully produced these effects will be reviewed, and several recently reported ESA systems will be introduced and discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.