Abstract
The inhomogeneous phase, which usually exists in graphene oxides (GOs), is a long-standing problem that has severely restricted the use of GOs in various applications. By using first-principles based cluster expansion, we find that the existence of phase separation in conventional GOs is due to the extremely strong attractive interactions of oxygen atoms at different graphene sides. Our Monte Carlo simulations show that this kind of phase separation is not avoidable under the current experimental growth temperature. In this Letter, the idea of oxidizing graphene on a single side is proposed to eliminate the strong double-side oxygen attractions, and our calculations show that well-ordered GOs could be obtained at low oxygen concentrations. These ordered GOs behave as quasi-one-dimensional narrow-gap semiconductors with quite small electron effective masses, which can be useful in high-speed electronics. Our concept could be widely applied to overcome the phase inhomogeneity in various chemically functionalized two-dimensional systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.