Abstract

Static magnetic configurations of thin circular soft (permalloy) magnetic nanodots, coupled to a hard antidot matrix with perpendicular magnetization, are studied by micromagnetic simulations. It is demonstrated, that dipolar fields of the antidot matrix promotes the formation of a magnetic vortex state in nanodots. The vortex is the dot ground state at zero external field in ultrathin nanodots with diameters as low as 60 nm, that is far beyond the vortex stability range in an isolated permalloy nanodot. Depending on the geometry and antidot matrix material it is possible to stabilize either radial vortex state or unconventional vortices with the angle between in-plane magnetization and radial direction ψ ≠ 0 , π / 2 .

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.