Abstract

To increase the boiling heat transfer limit, we disrupted the previously nonevaporating region and increased the vaporization activity of "inert" liquid molecules by introducing nano ridges on the boiling surface. This solved the paradox of no heat transfer occurring through the thinnest liquid film in boiling bubbles; thus, the internal heat transfer limit of the bubbles was exceeded. We found that vigorous boiling occurred immediately once the nonevaporating region was activated, and the bubble frequency increased by an order of magnitude, reaching 1186 Hz, which has not been previously reported. With an increase in heat flux, the boiling curve exhibited a "return". We achieved an extremely high bubble frequency by experimentally quantifying the major influence of nonevaporating region disruption on boiling heat transfer. The mechanism behind the generation of the ultrahigh-frequency bubbles was discovered. This study also reveals a new mechanism for the reversed boiling curve.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.