Abstract

Laser cooling of solids currently has a temperature floor of 50-100K. We propose a method that could overcome this using defects, such as diamond color centers, with narrow electronic manifolds and bright optical transitions. It exploits the dressed states formed in strong fields which extend the set of phonon transitions and have tunable energies. This allows an enhancement of the cooling power and diminishes the effect of inhomogeneous broadening. We demonstrate these effects theoretically for the silicon vacancy and the germanium vacancy, and discuss the role of background absorption, phonon-assisted emission, and nonradiative decay.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.