Abstract

In order to overcome the limitations of small system sizes in spin-glass simulations, we investigate the one-dimensional Ising spin chain with power-law interactions. The model has the advantage over traditional higher-dimensional Hamiltonians in that a large range of system sizes can be studied. In addition, the universality class of the model can be changed by tuning the power law exponent, thus allowing us to scan from the mean-field to long-range and short-range universality classes. We illustrate the advantages of this model by studying the nature of the spin glass state where our results hint towards a replica symmetry breaking scenario. We also compute ground-state energy distributions and show that mean-field and non-mean-field models are intrinsically different.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.